Logik
Her finder I links og kildehenvisninger fra brochuren Aktuelle emner og tendenser i matematikken om emnet »Logik«.
Til dette emne findes også en plakat som pdf til at downloade:
Videre læsning
- Wolfgang Rautenberg:Einführung in die mathematische Logik. Ein Lehrbuch. / A Concise Introduction to Mathematical Logic. Vieweg / Springer (2001/2006).
- Thomas Jech:Set Theory: The Third Millennium Edition, revised and expanded. Springer (2002).
- Kenneth Kunen: Set Theory. An Introduction To Independence Proofs. North Holland (1983).
- Heinz-Dieter Ebbinghaus: Einführung in die Mengenlehre. 4. Auflage. Heidelberg: Spektrum Akademischer Verlag (2003).
Weblinks
- https://de.wikipedia.org/wiki/Berry-Paradoxon
https://en.wikipedia.org/wiki/Berry_paradox - https://da.wikipedia.org/wiki/Formelt_sprog
https://de.wikipedia.org/wiki/Formale_Sprache
https://en.wikipedia.org/wiki/Formal_language - https://da.wikipedia.org/wiki/Aksiom
https://de.wikipedia.org/wiki/Axiom
https://en.wikipedia.org/wiki/Axiom - https://da.wikipedia.org/wiki/Zermelo-Fraenkels_aksiomer
https://de.wikipedia.org/wiki/Zermelo-Fraenkel-Mengenlehre
https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory - https://da.wikipedia.org/wiki/Hilberts_problemer
https://de.wikipedia.org/wiki/Hilbertsche_Probleme
https://en.wikipedia.org/wiki/Hilbert's_problems - https://da.wikipedia.org/wiki/Peanos_aksiomer
https://de.wikipedia.org/wiki/Peano-Axiome
https://en.wikipedia.org/wiki/Peano_axioms - https://de.wikipedia.org/wiki/Gödelscher_Unvollständigkeitssatz
https://en.wikipedia.org/wiki/Goedel's_incompleteness_theorems - https://de.wikipedia.org/wiki/Gödelscher_Vollständigkeitssatz
https://en.wikipedia.org/wiki/Goedel's_completeness_theorem - https://en.wikipedia.org/wiki/Constructible_universe
- https://de.wikipedia.org/wiki/Forcing
https://en.wikipedia.org/wiki/Forcing_(mathematics)
Matematiske artikler
- Juliet Floyd, Akihiro Kanamori: How Gödel Transformed Set Theory. Notices of the American Mathematical Society. vol. 53, nr. 4 (2006), s. 419–427.
- Paul J. Cohen: The Independence of the Continuum Hypothesis. Proceedings of the National Academy of Sciences of the United States of America, vol. 50, nr. 6 (1963), s. 1143–1148.
- Paul J. Cohen: The Independence of the Continuum Hypothesis, II. Proceedings of the National Academy of Sciences of the United States of America, vol. 51, nr. 1 (1964), s. 105–110.
- Paul J. Cohen: The Discovery of Forcing. Rocky Mountain Journal of Mathematics, vol. 32, nr. 4 (2002), s. 1071–1100.